Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Helminthol ; 98: e28, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38516701

ABSTRACT

A new species of trematode of anaporrhutine gorgoderid, from the gill chambers of the Munda round ray Urotrygon munda in Costa Rica is described, based on an integrative taxonomic approach that includes the use of light and scanning electron microscopy, ITS2 and 28S rDNA sequencing, and phylogenetic analysis. Anaporrhutum mundae sp. nov. can be distinguished from congeneric species by a combination of morphological traits and particularly by having the genital pore opening at the level of the intestinal bifurcation. The new species also can be distinguished from all other species of Anaporrhutum, except A. euzeti Curran, Blend & Overstreet, 2003, by having fewer testicular follicles per testis. Anaporrhutum mundae sp. nov. also differs from A. euzeti in its forebody shape and by having different morphology and location of the vitellaria. The study of the tegumental surface of A. mundae sp. nov., as revealed by scanning electron microscopy, allowed detection of new morphological characters for a member of Anaporrhutinae that may be of taxonomic value. These are: a stylet cavity dorsal to the oral sucker with a large penetration gland opening on each side of the cavity and small penetration gland openings located ventral to the stylet cavity, arranged in a circle around the mouth. This represents the first record of an Anaporrhutum species from Costa Rica. Further, A. mundae sp. nov. represents the first parasite described or reported in this host.


Subject(s)
Parasites , Trematoda , Trematode Infections , Male , Animals , Trematode Infections/parasitology , Phylogeny , Costa Rica
2.
J Fish Biol ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38450741

ABSTRACT

Appropriate diagnoses of parasites of apex marine predators are crucial to understand their biodiversity, host specificity, biogeography, and life cycles. Such diagnoses are also informative of ecological and biological characteristics of both host and environment in which the hosts and their parasites live. We here (i) investigate the parasite fauna of a bluntnose sixgill shark Hexanchus griseus (Bonnaterre, 1788) obtained from the Gulf of Naples (Tyrrhenian Sea), (ii) characterize molecularly all its metazoan parasites, and (iii) resurrect and report the main morphological features and phylogenetic position of Grillotia acanthoscolex, a cestode species previously synonymized with Grillotia adenoplusia. A rich parasite fauna represented by eight different taxa was found, including two monogeneans (Protocotyle grisea and Protocotyle taschenbergi), one digenean (Otodistomum veliporum), four cestodes (Crossobothrium dohrnii, Clistobothrium sp., G. acanthoscolex, and G. adenoplusia), and one copepod (Protodactylina pamelae). Sequencing of these samples accounts for an important molecular baseline to widen the knowledge on the parasitic fauna of bluntnose sixgill sharks worldwide and to reconstruct their correct food chains. The bluntnose sixgill shark was found to be a definitive host for all endoparasites found here, confirming that it occupies an apex trophic level in the Mediterranean Sea. The taxa composition of the trophic parasite fauna confirms that the bluntnose sixgill shark mostly feeds on teleost fish species. However, the occurrence of two phillobothrid cestodes (C. dohrnii and Clistobothrium sp.) suggests that it also feeds on squids. Finally, we emphasize the importance of using integrative taxonomic approaches in the study of parasites from definitive and intermediate hosts to elucidate biology and ecology of taxa generally understudied in the Mediterranean Sea.

3.
Vet Parasitol ; 311: 109805, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36150240

ABSTRACT

Anisakis spp. (Nematoda, Anisakidae) are parasites known by their economic and health impacts, as their L3 larval stages infect a variety of fish species, many of them commercial species, sometimes causing zoonotic episodes due to consumption of raw or undercooked fish. The aim of this study is to determine the infection process and the potential impact of A. simplex s.l. L3 on gilthead seabream (Sparus aurata L.), one of the most important fish species in Mediterranean aquaculture, by periodic histological monitoring of the infection process. For this, fish were experimentally infected with A. simplex s.l. L3 and periodically analysed for L3 larvae, collecting samples at different time points (hours post ingestion, hpi): 3, 6, 12, 18, 24, 36, 48, 72, 96, 120, 144, 168 and 192, up to 6 months post infection (mpi). All samples were observed under a stereomicroscope and later fixed for histological examination. A. simplex s.l. L3 were only found on the visceral surface and mesenteric tissue, but never free or encapsulated in muscle. Chronological events were found to occur faster than those reported in previous studies. They were first observed 6 hpi in the coelomic cavity, being present up to 48 hpi. While the earliest evidence of fibrocytes surrounding A. simplex s.l. L3 larvae were observed at 18 hpi, complete spiral encapsulation occurred by 72 hpi. Alive parasites were observed up to 6 mpi. Although the infection of gilthead seabream by Anisakis spp. larvae is feasible, it seems unlikely, especially in aquaculture given the hygienically controlled feeding systems. In the event of infection, the transmission would be unlikely due to the poor condition in which specimens of Anisakis spp. are found. Furthermore, since no larvae were detected in the fish's muscle, human infection seems improbable.


Subject(s)
Anisakiasis , Anisakis , Ascaridoidea , Fish Diseases , Sea Bream , Animals , Humans , Anisakiasis/veterinary , Anisakiasis/parasitology , Larva/physiology , Fish Diseases/parasitology
4.
IMA Fungus ; 13(1): 5, 2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35272715

ABSTRACT

One of the most promising aquaculture species is the Atlantic bluefin tuna (Thunnus thynnus) with high market value; disease control is crucial to prevent and reduce mortality and monetary losses. Microsporidia (Fungi) are a potential source of damage to bluefin tuna aquaculture. A new microsporidian species is described from farmed bluefin tunas from the Spanish Mediterranean. This new pathogen is described in a juvenile associated with a highly severe pathology of the visceral cavity. Whitish xenomas from this microsporidian species were mostly located at the caecal mass and ranged from 0.2 to 7.5 mm. Light and transmission electron microscopy of the spores revealed mature spores with an average size of 2.2 × 3.9 µm in size and a polar filament with 13-14 coils arranged in one single layer. Phylogenetic analysis clustered this species with the Glugea spp. clade. The morphological characteristics and molecular comparison confirm that this is a novel microsporidian species, Glugea thunni. The direct life-cycle and the severe pathologies observed makes this parasite a hard risk for bluefin tuna cultures.

SELECTION OF CITATIONS
SEARCH DETAIL
...